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We consider the flow resulting from the interaction between the trailing edge of a 
supersonic splitter plate and sound waves incident on the trailing edge from upstream, 
as a model problem of relevance to understanding the unsteady flow in the vicinity of 
a supersonic jet nozzle. Morgan has previously shown that there is only one plausible 
solution to the outer potential-flow problem in this supersonic system, in which the 
vortex-sheet deflection close to the trailing edge varies linearly with the distance from 
the trailing edge, and that, in contrast to the subsonic version of the problem, it is 
not possible to construct an outer solution in which the vortex sheet leaves the plate 
smoothly (i.e. with zero gradient). In this paper our aim is to establish that this 
supersonic potential-theory solution is consistent with the equations governing the 
viscous flow close to the plate, and to provide a description of the nature of this inner 
flow, and we proceed by applying asymptotic analysis in the limit of large Reynolds 
number. For appropriate choices of the incident-wave amplitude and frequency, the 
canonical triple-deck structure at the trailing edge is realized, and the governing 
equations are then simplified by linearizing about the steady base flow in the lower 
deck; upstream of the trailing edge the unsteady flow is calculated analytically, whilst 
downstream a two-region parabolic scheme is employed. Our inner viscous flow is 
seen to match onto the outer potential-theory solution, and in particular we verify 
that the downstream evolution of the lower-deck flow as it emerges into the outer 
region corresponds exactly to the behaviour of the vortex sheet at the trailing edge 
in the outer flow. Once the consistency of the outer solution has been established, the 
dependence on the various flow parameters can be investigated, and we demonstrate 
in particular that significant unsteady shear-layer disturbances can be generated at 
the trailing edge over a wide range of values of the incidence angle, and that the 
amplitude of these disturbances decreases with increasing supersonic flow speed. 

1. Introduction 
The question of noise generation by high-speed supersonic jets has attracted in- 

creased interest in recent years, given the possible development of a second generation 
of civilian supersonic transport aircraft. One aspect of this problem is the interaction 
between the lip of the jet nozzle and acoustic waves in the flow (which might be 
generated by, for instance, some engine component upstream, or by the interaction 
of turbulence and the shocks in the jet core downstream). This is an important issue 
since it provides both in general an initial condition for determining the downstream 
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evolution of instability waves launched from the lip into large-scale coherent struc- 
tures on the jet, as well as being relevant to the phenomenon of ‘screech’, which is 
thought to arise as a result of feedback between the shock cells on the jet and the 
nozzle lip. In this paper we shall therefore consider the unsteady flow in the close 
proximity of the nozzle lip, which, on the lengthscales of interest in this paper, can 
be represented by the trailing edge of a flat plate. 

A large body of work has been completed on both the steady and the unsteady flow 
in the vicinity of the trailing edge of a splitter plate, concerning both the outer inviscid 
and inner boundary-layer regions. Considering first steady flows, Stewartson (1969) 
and Messiter (1970) studied the steady incompressible flow near the trailing edge of a 
flat plate with equal free-stream velocities on either side of the plate, and concluded 
that in the limit of large Reynolds number the Blasius boundary layer upstream and 
the Goldstein wake downstream merge in the now familiar triple-deck structure in the 
vicinity of the trailing edge. Subsequently Daniels has generalized Stewartson’s and 
Messiter’s approach to the cases of supersonic flow (Daniels 1974), and of unequal 
free-stream speeds on either side of the plate (Daniels 1977); in the particular case 
of stagnant flow on one side of the plate it turns out that to leading order the 
effects of the trailing edge are not felt on the triple-deck scale, but are localized in 
a much smaller region around the trailing edge. Brown & Stewartson (1970) have 
investigated the relationship between the steady Kutta condition and the viscous flow 
in the vicinity of the trailing edge of an airfoil at incidence. 

Turning now to unsteady trailing-edge flows, we mention first the work of 
Orszag & Crow (1970), who considered the unsteady potential flow past the trail- 
ing edge of a splitter plate with incompressible uniform flow on one side and stagnant 
fluid on the other in the absence of external forcing, and it turns out that the unsteady 
flow is not uniquely specified by the solution of the potential-theory problem. By 
adding suitable eigenmodes of the steady system, Orszag & Crow construct three dif- 
ferent solutions, each with a different form of vortex-sheet deflection near the trailing 
edge, and the selection of one particular solution from amongst these possibilities is 
made by the imposition of a Kutta condition expressing the coupling between the 
outer flow and the inner viscous region. One possibility is the imposition of what is 
termed a ‘full Kutta condition’, in which case the vortex sheet leaves the plate with 
zero gradient (in fact the unsteady deflection of the sheet is proportional to x i ,  where 
x is the distance from the edge); whilst a second possibility, in which the vortex 
sheet leaves the trailing edge with infinite gradient (unsteady deflection proportional 
to x i )  is termed the ‘no-Kutta-condition solution’. Orszag & Crow, however, argue in 
favour of what they call a ‘rectified Kutta condition’, in which the non-singular steady 
eigenfunction corresponding to a parabolic displacement of the vortex sheet is added 
onto the potential-theory solution in such a way that the vortex sheet bends upwards 
into the moving stream at all times. In order to resolve the question of the edge 
behaviour in Orszag & Crow’s problem, Daniels (1978) has considered the structure 
of the boundary-layer flow in the vicinity of the trailing edge, in an attempt to match 
an inner solution onto the various possible outer flows, and has demonstrated that 
the full-Kutta-condition solution can indeed be matched consistently with a viscous 
flow on the triple-deck scale. Daniels also demonstrates that the no-Kutta-condition 
solution cannot be matched onto the boundary-layer flow for oscillations of the same 
amplitude as in the full-Kutta-condition solution - suggesting that such a flow would 
then not be sustained and that separation would occur - but that a matching could 
be made for much smaller amplitudes of oscillation (this matching depends on the 
existence of a solution of a formidable numerical problem in a small region about 
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the trailing edge, and remains an open question). We also mention here that the un- 
steady viscous flow near the trailing edge of an oscillating airfoil in an incompressible 
mainstream has been considered by Brown & Daniels (1975), and that the structure 
of this flow is in fact very similar to that found by Daniels in the splitter-plate prob- 
lem. Crighton (1972~) has considered the compressible version of Orszag & Crow’s 
system, and suggests that a large increase in the level of radiated sound occurs when 
the full Kutta condition is applied at the trailing edge; however, Howe (1978) has 
pointed out that this solution to the unforced problem is composed of incoming 
waves at infinity, and must therefore be rejected. Crighton & Leppington (1974) have 
developed a causal solution to the forced problem of the scattering of sound from a 
point source by a subsonic splitter plate; in addition, Rienstra (1981) has considered 
both the outer and inner problems for diffraction of acoustic waves by a trailing edge 
with equal free-stream velocities on either side of the plate, and again demonstrates 
that the application of a Kutta condition can have a significant impact on the level 
of aerodynamic noise generation. Reviews of the application of Kutta conditions in 
a wide variety of situations and of trailing-edge noise theories have been given by 
Crighton (1985) and Howe (1978) respectively. 

Morgan (1974) has considered the potential flow corresponding to the diffraction of 
acoustic waves from a point source by the trailing edge of a splitter plate separating 
stagnant fluid from a uniform supersonic stream, and this can be thought of as 
essentially being the supersonic analogue of Orszag & Crow’s problem (the problem 
solved by Orszag & Crow is unforced, but it turns out that it is not possible to find 
a supersonic attached-flow solution in the absence of external forcing). In contrast to 
the incompressible problem, however, there is in fact only one plausible supersonic 
solution, in which the vortex sheet leaves the splitter plate with a non-zero, but 
finite, gradient (i.e. deflection proportional to x close to the trailing edge) and in 
which the pressure at the trailing edge is discontinuous. It is not possible to find a 
potential-theory solution in which the behaviour at the trailing edge is any smoother 
than this by the addition of a suitable combination of steady eigenmodes, since all 
the appropriate eigenmodes are themselves singular at the trailing edge, as discussed 
by Guo (1990a,b); in particular, it is not possible to find an analogue of the subsonic 
full-Kutta-condition solution, in which the vortex sheet leaves the splitter plate with 
zero gradient. In this paper we therefore aim to establish that this single supersonic 
potential-theory solution can be matched consistently onto an inner viscous flow (and 
this is far from obvious a priori, given that in the incompressible problem the outer 
solution in which the vortex sheet fails to leave the plate with zero gradient cannot 
necessarily be matched onto an inner solution), and to provide a description of this 
inner solution. 

We consider a different outer problem to the one solved formally by Morgan (1974) 
(which will have the advantage of yielding rather more tractable expressions for the 
various unsteady quantities to be calculated), and suppose that plane waues are 
incident on the trailing edge from the supersonic stream; the viscous flow in the 
case of waves incident from the stagnant fluid is in fact very similar. The potential- 
theory outer solution is outlined in $2, and the behaviour of the unsteady flow 
near the trailing edge, which will be required for matching onto the inner solution, 
is determined. In $3, the structure of the inner solution in the limit of large 
Reynolds number and for particular choices of the incident amplitude and frequency 
is described, and the problem of determining the flow in the vicinity of the trailing edge 
is seen to reduce to the solution of the unsteady boundary-layer equations in the lower 
deck with appropriate boundary conditions (the structure of the boundary-layer flow 
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turns out to be similar to that determined by Daniels 1975 for an oscillating airfoil in 
supersonic flow). In $4, we simplify these equations by supposing that the unsteady 
viscous flow generated by the incident-wave interaction is a small perturbation to the 
steady base flow, allowing the lower-deck equations to be linearized; upstream of the 
trailing edge this linearized system can then be solved analytically, whilst downstream 
the solution is determined numerically using a two-region finite-difference scheme 
developed by Smith (1974). The numerical lower-deck solution is seen to converge to 
a Goldstein wake flow downstream, the centreline of which oscillates harmonically 
in time, and which in turn is seen to match onto the vortex-sheet deflection near the 
trailing edge. 

2. Potential-theory solution 
In this section we describe the outer potential-theory solution for our supersonic 

splitter-plate problem. A number of studies on related problems already exist, and in 
particular we mention here the work of Morgan (1974), who considers a supersonic 
splitter plate with a sound source at a finite distance from the plate in the stationary 
fluid, and Crighton (1972 a, b) ,  who considers the scattering of incident plane waves 
by a trailing edge with particular reference to low-Mach-number flows. The details 
of our analysis are in fact similar to the work described in the above, and only an 
outline is required here; in what follows, we shall concern ourselves with extracting 
closed-form expressions for the behaviour of the unsteady flow in the vicinity of the 
trailing edge from the potential-theory solution. 

We consider a semi-infinite rigid plate lying along the negative x-axis, with uniform 
steady mean flow parallel to the plate in y > 0, and with zero mean flow in y < 0; 
the mean-flow velocity is U,, and we suppose for definiteness that the sound speed, 
coo, is uniform throughout the fluid - consideration of the effects of differing sound 
speeds in the uniform-stream and stagnant regions could easily be included (Cargill 
1982). The mean-flow Mach number is simply M = Um/coo, and in our supersonic 
problem we have M > 1 ; we shall also suppose, again for definiteness, that M < 2 8 ,  
in which case the flow possesses the familiar Kelvin-Helmholtz instability (see for 
example Jones & Morgan 1973). A plane harmonic wave, with frequency w, is 
incident on the plate from upstream in y > 0, and we suppose that the wave phase 
fronts make an angle Oi with the x-axis, so that the wavenumbers associated with the 
x- and y-directions, kl and -yl(kl), are given by 

where ko = w/cm. We assume that the amplitude of this incident wave is small, so that 
the resulting scattered field can be taken as irrotational (apart from the vortex sheet 
shed from the trailing edge), and the total unsteady velocity potential (i.e. the sum of 
incident and scattered fields) is then denoted cp1,2(x,y)exp(iwt) in y > 0 and y < 0 
respectively, where cpl (x, y) satisfies the convected form of the Helmholtz equation, 

(h4& + iko)2 cpl - V2cpl = o , 

and where cp2 satisfies (2.2) with M set to zero. For boundary conditions we shall 
require that the total normal velocity on the plate is zero, that the transverse velocity 
of the vortex sheet is equal to the y-component of the fluid velocity on either side of 
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FIGURE 1. The geometry of the outer problem. 

the vortex sheet, and that the pressure is continuous across the vortex sheet. We shall 
also require the solution to be causal, and in order to do this we deform subsequent 
integration contours in the way prescribed by Crighton & Leppington (1974). The 
system is shown in figure 1. 

The solution will be completed by use of Fourier transforms, but before doing this 
it proves necessary to separate off explicitly the waves which are reflected from, and 
transmitted through, the vortex sheet, since the transforms of these components are 
not well-defined. This decomposition has been completed by Crighton (1972 b),  and 
involves the application of the boundary conditions pertaining to the vortex sheet 
along the entire x-axis. Once these transmitted and reflected components have been 
determined, we can write down expressions for the total unsteady potentials above 
and below the plate, and for the total unsteady displacement of the vortex sheet 
(denoted q(x) exp(iot)), as follows: 

m(x, y) = I exp(-iklx + iyl(kdy) + R exp(-iklx - iyl(k1)y) + 4(x, Y )  , 
C p 2 ( X , Y )  = T exp(-ihx + iyz(k1)y) + V(X,Y)  7 

(2.3) 
(2.4) 
(2-5) 

The functions 4(x,y), y ( x , y )  and <(x) represent the scattered potentials above and 
below the plate and the transverse displacement of the vortex sheet respectively, 
once the components corresponding to the transmission and reflection of the incident 
wave by the vortex sheet have been subtracted. In addition, yz(k1) corresponds 
to the transverse wavenumber of the transmitted wave, and can be determined by 
elementary methods; the definitions of y1,2(k) are given below. The quantities R and T 
are related to the effective reflection and transmission coefficients of the vortex sheet, 
and together with H ,  the amplitude of the deflection of the sheet associated with the 
incident wave, can be found in terms of the incident amplitude I in a straightforward 
manner. 

Now that the reflected and transmitted components have been explicitly removed, 
we can take Fourier transforms of 4(x,y), ~ ( x , y )  and <(x) with respect to x, denoted 
by @(k,  y), !P ( k ,  y) and E ( k )  respectively, with 

q ( x )  = Hexp(-iklx) + <(x) . 

and the inversion contour for these transforms must be chosen in such a way as to 
yield a causal solution; this choice is complicated by the presence of the Kelvin- 
Helmholtz convective instability, and will be discussed below. It can then be shown 
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where 

and where the superfixes & indicate that the Fourier transforms have been taken over 
the semi-infinite intervals x > 0 and x < 0 respectively. The quantities y1,2(k)  are 
defined as follows: 

y l ( k )  = ((ko - Mk)2 - k2)  ' , 
with a branch cut joining the two branch points and with y1 taking negative real 
values as k --+ GO along the positive real axis; 

y z ( k )  = (k; - k 2 )  + (2.10) 

with branch cuts emanating from f k o  and connecting the branch points to infinity 
through the lower and upper halves of the complex k-plane respectively, and with 
y 2 ( k )  taking negative imaginary values as k -+ GO along the real axis. The branch cuts 
are shown in figure 2. As well as these branch points, it turns out that the various 
Fourier transforms possess poles at the zeros of G(k), and Jones & Morgan (1973) 
have shown that there are in fact two such poles and that, for M < 21/2 and real w ,  
they form the complex-conjugate pair uo, ui  with Im(uo) > 0; the contribution from 
the pole k = uo corresponds to the Kelvin-Helmholtz mode (for M > 2&' the two 
poles lie on the real axis, and coalesce in the limit M --+ 2 d ) .  In order to ensure 
that our solution is causal we follow Crighton & Leppington (1974), who considered 
the scattering of sound from a point source above a subsonic splitter plate. Their 
approach involves first solving the problem for complex w with argument close to 
-n/2, and then determining the solution in the limit of the imaginary part of o 
approaching zero through negative values by analytic continuation. In this way, they 
demonstrate that the inversion contour must be deformed to lie above both the poles 
at k = uo and at k = ui. 

Once the appropriate deformation of the inversion contour in the complex k-plane 
has been made, the solution can be completed by use of the Wiener-Hopf technique 
(Noble 1958), and we note first that the various transforms are analytic in the thin 
strip centred on the deformed inversion contour, as shown in figure 2 - the overlapping 
half-planes R+ are also shown in figure 2 (here w possesses a small negative imaginary 
part, which is set to zero at the end of the analysis). The most important step is 
to make a multiplicative factorization of G(k) in the form G(k) = G+(k)G-(k), in 
which G'(k) are analytic, non-zero and possess algebraic behaviour at infinity in R' 
respectively. This factorization has been completed by Morgan (1974), and is stated 
in Appendix A for completeness. Equation (2.7) can then be rewritten in a form in 
which the left-hand side is analytic in R+ and the right-hand side is analytic in R-, 
thereby providing the analytic continuation of a function, E ( k )  say, from the strip 
R+ n R- into the entire complex plane (it should be noted that the point k = kl lies 
in R+). The usual Wiener-Hopf arguments can then be used to show that E ( k )  = 0, 
yielding two equations from equation (2.7), and thereby yielding expressions for the 
unknown Fourier transforms of the velocity potentials and the vortex-sheet deflection. 
The choice E ( k )  # 0 would yield a solution in which the vortex sheet is not attached 
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FIGURE 2. The complex k-plane employed in the solution of the outer potential-theory problem, 
including the branch cuts and the two zeros of G ( k ) .  The overlapping half-planes R+ and R- lie 
above and below the two curved lines indicated, and their intersection, corresponding to the strip 
of analyticity containing the Fourier inversion contour, is hatched. 

at the trailing edge, and although such an outer flow might be compatible with some 
inner viscous structure, we will restrict our attention here to the attached-flow case. 

In principle, the scattered field throughout the fluid can now be determined by 
inverting the Fourier transforms derived above, but this in fact proves rather difficult, 
since the complicated inversion integrals cannot all be evaluated in closed form. 
However, for the purposes of our study it will only be necessary to determine the 
behaviour of the unsteady flow in the vicinity of the trailing edge, and it turns out 
that the relevant expressions can be derived in a relatively compact way. We consider 
first the unsteady deflection of the vortex sheet as it leaves the trailing edge of the 
plate; it can be shown from the Wiener-Hopf analysis that the Fourier transform of 
the modified deflection of the vortex sheet is 

(2.11) 

and by considering the limit of k -+ co E R+, we can determine the behaviour of t(x) 
as x -+ O+ (see Noble 1958), and find that 

i(l - R)yl(kl)(M2 - 1)fG ( + kl)x as x -+ +O . 
M2cm(ko - Mkl) r(x) - (2.12) 

It can therefore be seen that the vortex sheet leaves the trailing edge with a non- 
zero gradient, and it should be emphasized that it is not possible to construct 
some alternative solution which behaves more smoothly at the trailing edge by the 
addition of suitable eigenmodes of the system, since, as argued by Guo (1990 a, b),  
all the eigenmodes which could be added onto this potential solution are themselves 
singular, a@ are therefore inadmissible. This is in contrast to the subsonic version of 
the problem, for which it is possible to introduce an eigenmode corresponding to a 
parabolic deflection of the vortex sheet so as to yield a solution in which the vortex 
sheet leaves the trailing edge with exactly zero gradient. 

In order to complete the matching with the inner viscous flow, we shall also 
require expressions for the unsteady pressure near the trailing edge. The unsteady 
pressure above and below the plate, denoted pl,2(x,y)exp(iwt), is related to the 
unsteady velocity potential via the linearized Bernoulli equation, and expressions 
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for the Fourier transforms of the pressure, pI,*(k,y), can easily be found from the 
Wiener-Hopf analysis. Above the plate the total unsteady pressure on y = +O for 
x < O i s  

(2.13) 
where pa is the quiescent fluid density, and this result can be understood simply by 
noting that, since the uniform stream above the plate is supersonic, the only unsteady 
flow that can exist above the plate and upstream of the trailing edge consists of the 
incident wave plus its reflection from the plate. Alternatively, downstream of the 
trailing edge it is not possible to derive a closed-form expression for the pressure 
valid for all x > 0, and we proceed by determining the half-range Fourier transform 
of pl(x,y) over x > 0 and by again considering the limit of k + co E R+, leading to 

pl(x, +O) = -2ip,c,I(ko - Mkl) = El , 

(2.14) 
By comparing equations (2.13) and (2.14) it becomes clear that the total unsteady 
pressure on y = +O jumps across x = 0 by the non-zero quantity E2, corresponding 
to the discontinuity across the Mach line in the supersonic main stream. Below the 
plate, it can be shown that the total pressure along y = -0 is continuous across 
x = 0, and we have that 

p2(-0,  -0) = p2(+0, -0) = El + E2 . 
For large o, with the amplitude of the incident pressure held fixed (i.e. vary o but 
keep lo held fixed), it is easy to see that the amplitude of the unsteady pressure in 
the vicinity of the trailing edge, and hence the quantities E1,2, are independent of 
o. It is also clear that there is a non-zero pressure jump across y = 0 for x < 0, 
corresponding to the unsteady lift on the plate. 

We have therefore seen how the vortex sheet leaves the plate with unsteady 
displacement proportional to x, and how the unsteady pressure is discontinuous just 
above the trailing edge (strictly, the slip velocity on the plate close to the trailing edge 
is also required, but can easily be found using exactly the same arguments as described 
above). In the following sections we shall demonstrate that this outer flow is fully 
consistent with the inner viscous structure near the trailing edge (and is therefore 
realizable in practice), but at this point we shall anticipate this conclusion, and 
proceed to investigate the dependence of the vortex-sheet deflection (or equivalently 
the magnitude of the unsteady perturbations to the shear layer) on the Mach number 
M and incidence angle 8,. In order to do this in a physically realistic way, we vary 
M and 8, whilst keeping the magnitude of the incident acoustic pressure (which is 
proportional to d / ( l  + Mcos8,)) held fixed, rather than simply by fixing I .  In 
figure 3 we therefore plot the magnitude of $(0)(1 + Mcos8,)/1 against 8,, in the 
range 0 < 8, < OC,  where cos8, = -l /(M + 1). It can be seen that for a given value 
of M the gradient of the vortex sheet at the trailing edge is non-zero, and is virtually 
independent of 8,, over a wide range of acute values of 8,, and this therefore suggests 
that noise generated by engine components well upstream of the nozzle can have 
a significant effect on the behaviour of the unsteady flow near the nozzle lip. This 
deflection decreases sharply for 8, > n/2, however, and this is hardly surprising since 
much of the acoustic energy generated by a source directly above or downstream of 
the trailing edge would be convected further downstream by the supersonic mean flow 
and would not interact with the trailing edge. The critical value 8, = 8, corresponds 
to a non-uniformity in the outer solution caused by the coalescence of the branch 
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FIGURE 3. The normalized gradient of the vortex sheet in the outer potential flow at the trailing 
edge, q’(O)(l + McosQi)/I, for incidence angle, Qi, and for various values of the mean-flow Mach 
number M .  Here, we have taken w = 100 Hz and co = 340 ms-’. 

point at k = -h and the pole at k = k l .  Modification of the outer solution to 
account for this would be possible, but need not be attempted here; for Oi > 8, the 
vortex-sheet deflection will be negligible, and indeed must be identically zero once Oi 
becomes sufficiently large for the direction of the incident waves to have crossed the 
Mach cone emanating from the trailing edge. We can also see from figure 3 that the 
magnitude of the vortex-sheet deflection for a given incidence angle decreases quite 
markedly as the free-stream Mach number is increased in the range 1 < M < 2 a .  

3. Viscous flow 
We suppose that a Blasius boundary layer emanates from the point x = -1 on the 

upper surface of the plate, and in what follows we ignore any effects introduced by 
the interaction between the incident wave and the boundary layer near this point; this 
would not, of course, be an appropriate simplification in the case of the interaction 
between sound waves and a finite airfoil, in which instability waves would be launched 
from the leading edge, but since our aim here is to understand the influence of the 
trailing edge alone in the context of jet-nozzle interactions, this approach seems a 
reasonable one. We can therefore define a Reynolds number Re = U,l/v, where v, 
is the fluid kinematic viscosity far from the plate, together with the small parameter 
E = (Re) -+ .  The asymptotic analysis presented in what follows is completed in the 
formal limit E + 0. 

Before going on to consider the unsteady viscous flow resulting from the incident- 
wave interaction, we must first discuss the structure of the steady flow past the splitter 
plate in the absence of forcing. This steady flow has been considered in the case of an 
incompressible main stream (Daniels 1977), and it turns out that the steady solution 
for our supersonic flow is very similar. Upstream of the trailing edge and above the 
plate the steady flow comprises a conventional compressible Blasius boundary layer, 
which merges at the trailing edge with the downstream Goldstein wake. The most 
significant feature of the steady problem, however, is the fact that in the outer region 
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of the flow (i.e. where x,y = O(1)) the O(e4) perturbation to the pressure due to 
the presence of the trailing edge is non-singular at the trailing edge. This can easily 
be seen by writing the pressure in the outer flow in the form pm + e4pl + . . ., and 
noting that in the stagnant fluid below the plate p1 = 0, whilst above the plate p1 
is a solution of the wave equation. By continuity of pressure across the wake, this 
means that pl(x,O+) = 0 for x > 0, and combining this with the fact that in the 
limit y -P +O the O(e4) normal velocity in the outer region must match with the 
Blasius flow for x < 0, it is easy to show that p1 is non-singular at the origin; the 
argument follows in exactly the same way as in Daniels (1977), except that in the 
incompressible case p1 is of course a solution of Laplace’s equation instead of the 
wave equation. The transition between the Blasius boundary layer and the Goldstein 
wake is therefore a particularly smooth one, and to leading order the steady flow 
does not possess any triple-deck structure, in contrast to the case of a trailing edge 
with non-zero mean flow on both sides (Stewartson 1969; Daniels 1974), where the 
singularity in the outer pressure perturbation is resolved on the triple-deck scale. In 
our problem, the effects of the presence of the trailing edge on the steady flow are 
restricted to a very small region about the trailing edge with extent O(e6),  as shown 
by Daniels (1977) in the incompressible case. The important implication is that on 
the triple-deck scale the steady flow is exactly the Blasius boundary layer upstream 
of the trailing edge and the Goldstein wake downstream of the trailing edge, and this 
will make our subsequent linearization of the unsteady viscous flow about the steady 
base flow particularly straightforward. 

The nature of the unsteady viscous flow is crucially dependent on the choice 
of the magnitude of the acoustic-wave frequency, w, and we follow Daniels (1978) 
and Rienstra (1981) in taking o = O ( c 2 ) .  In order to obtain the canonical triple- 
deck structure at the trailing edge, the amplitude of the unsteady outer pressure 
perturbation at the trailing edge must be O(e2), and to achieve this it can be seen 
from equations (2.13) and (2.14) that we must choose I = O(e4) (given this choice of 
parameters, the slip velocities above and below the plate are also O(e2)) .  We shall 
suppose that the fluid has Prandtl number unity and that the dynamic viscosity, p, is 
related to the temperature, T, via Chapman’s law, i.e. 

(3.1) 
where ,uw and Tw are the viscosity and temperature at the wall. 

Turning now to the unsteady viscous flow, the compressible-boundary-layer equa- 
tions are cast into a particularly simple form using the Howarth-Dorodnitsyn trans- 
formation described by Stewartson (1964). On the upper surface of the plate and for 
x = 0(1) the viscous flow in the presence of the incident wave is given by the sum of 
the steady component corresponding to the Blasius boundary layer (thickness 0 (e4)) 
and an unsteady term; over most of the boundary layer the latter is simply equal to 
the outer potential-flow slip velocity but is decelerated to zero in a thin Stokes layers 
(thickness O(e5)) on the plate surface. On the lower side of the plate there is of course 
no steady Blasius flow, and the leading-order contribution is provided solely by the 
outer slip velocity, which is again decelerated to zero in a Stokes layer on the plate 
surface; we note that the steady flow below the plate is not identically zero, since, 
as discussed by Daniels (1977), there is a region of back flow, but this is sufficiently 
weak not to affect the unsteady solution to leading order. In the limit of x + -0 
the boundary layer is matched directly with a triple-deck structure at the trailing 
edge, as described below; there is no need for the addition of a fore-deck, as in the 
case of an oscillating airfoil in subsonic flow (Brown & Daniels 1975), essentially 

P / P m  = C(T/Tm) with c = (Pw~m/PmTw) , 
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because the outer unsteady pressure in our supersonic problem is non-singular (but 
discontinuous) at the trailing edge. 

In the triple-deck region the unsteady flow is very similar to that described by 
Daniels (1975) for the oscillating airfoil in supersonic flow, and no details of the 
analysis need be presented here. The unsteady triple-deck structure, which is essentially 
equivalent to that first found by Stewartson & Williams (1969) near separation in 
steady supersonic flow, has longitudinal extent O(e3)  about the trailing edge, and 
acts to smooth out the jump in the outer unsteady pressure described by equations 
(2.13) and (2.14). Determination of the flow in the triple deck reduces to the solution 
of the equations in the lower deck, which are simplified by introduction of scaled 
non-dimensional variables (denoted by capital letters) ; the scalings are as in Daniels 
(1977), and we find that 

au au au aP a2u 
a T  ax aY ax a Y 2  

s- + u- + I/- = -- + - 

---+-=o au av 
ax ay  

with 
d A  

P ( X ,  T) = dX + EI exp(iT), Y > 0 , (3-4) 

(3.5) P ( X ,  T) = (Ei + Ei )  exp(iT), Y < 0 , 

where 

Here U ,  I/ are the scaled lower-deck velocity components, S is the scaled frequency 
and A is the usual Blasius wall shear. In addition, we have the boundary conditions 

U = V = O  on Y = f O , X < O ,  
U - Y - A  as Y + m ,  
U - Y  as X + - m , Y > O ,  
U - 0  as X + - c o , Y < O .  

(3.7) 
(3.8) 
(3.9) 

(3.10) 

Above the plate, the pressure is independent of Y through the lower and middle decks 
and is matched onto the discontinous outer pressure through the inviscid upper deck. 
Below the plate, however, given the absence of mean flow, the pressure in the lower 
deck is exactly equal to the outer pressure given by equation (2.14), leading to the 
expression given in (3.5). We can therefore conclude from the relationship between 
the pressure and the displacement, and from the continuity of pressure across the 
wake, that the displacement is 

A ( X ,  T) = E;X exp(iT) + D exp(iT) for X > 0 , (3.11) 

where D is a constant to be determined later. 

4. Solution of the lower-deck equations 
In this section we linearize the lower-deck problem described in equations (3.2)- 

(3.10) by treating the unsteady flow induced by the interaction of the incident wave 
as a small perturbation to the steady base flow. It is again emphasized that the steady 
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flow in the lower deck takes a particularly simple form in our problem; to leading 
order the steady flow in the lower-deck region upstream of the trailing edge and 
above the plate is just uniform shear, whilst below the plate the steady flow arises at 
a higher order than the unsteady outer slip velocity and is therefore taken as zero. 
Downstream of the trailing edge the steady flow is given by the limiting form of the 
Goldstein wake flow (Stewartson 1969), and can be expressed in terms of the solution 
of an ordinary differential equation. 

4.1. Unsteady flow upstream of the trailing edge 
We write the lower-deck velocity in the form 

( U ( X ,  Y, T ) ,  V ( X ,  Y ,  T ) )  = ( Y  + U ( X ,  Y )  exp(iT), V ( X ,  Y )  exp(iT)) , (4.1) 

where U and v represent the unsteady components, with lul, I V l <  1; in addition, 
we have A(X, T )  = A(X) exp(iT) for all X. By substituting (4.1) into the lower deck 
equations and neglecting quadratic terms, it can be seen that above the plate and for 
x<o 

au 
ax 

an a i i  
ax ay  

i S U + Y - + V  

- + - = o  

subject to the boundary conditions 

d2A a 2 u  
~ = --(X,O) for X < O  , 
dX2 d Y 2  

U ( X ,  Y) - -A(x) as Y --+ 00 , 
V ( X , Y ) - O  as x-+-cc , 

(4.4) 

(4.5) 
(4.6) 

where condition (4.4) has been derived by substituting the no-slip condition into (4.2). 
This linear system can be solved analytically, either by use of the Wiener-Hopf 
technique, as is done by Brown & Daniels (1975) for an oscillating airfoil in subsonic 
flow, or simply by supposing that the X dependence of the solution takes the form of 
a simple exponential in X < 0, as is done by Daniels (1975) for an oscillating airfoil 
in supersonic flow and by Stewartson & Williams (1969) in their original supersonic 
triple-deck analysis. We begin by defining the kernel function, X(k, Y), by 

1 
k2 

/ IAi  ([(k + i6) exp(-i.n/2)] f (t - S/k)) dt 

[(k + i6) exp(-i.n/2)] fAi’(y0) 
X(k,  Y) = -- + 9 (4.7) 

where 

yo = [(k + id) exp(-in/2)] f (-S/k) , (4.8) 
and where 6 is a small positive parameter which has been introduced to facilitate 
the definition of the third root - we suppose that there is a branch cut in the lower 
half of the k-plane emanating from k = -i6 and running parallel to the negative 
imaginary axis, and that (k + id) f takes positive real values as k -+ 00 on the real axis. 
Whichever of the two methods of solution is used, the key step is now to determine 
the roots of the equation 

X(k,O) = 0 (4.9) 
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lying in the upper half of the k-plane, and although it is not possible to solve (4.9) 
analytically, it can be shown numerically that there is in fact just a single root in 
the upper half-plane, at k = ic say. The numerical technique employed in calculating 
K was suggested by Brazier-Smith & Scott (1991), and involves the use of winding- 
number integrals (a brief description of its application to our problem is given in 
Appendix B); this approach proves particularly efficient since it does not involve the 
numerical solution of the linearized lower-deck equations. Some simplification of (4.9) 
is possible when S is either large or small, and it can be shown that 

ic - sf exp(3ni/4) as s + co , 

as found by Daniels (1975), whilst 

(4.10) 

K - i [-3Ai’(O)]’ as S + 0 , (4.1 1) 

corresponding to the Stewartson & Williams (1969) steady eigensolution. The path of 
the single zero in the k-plane for varying S was calculated using our winding-number 
technique, and was seen to be in agreement with both these limits; this path is shown 
in figure 6, Appendix B. 

Once the single root k = ic of (4.9) has been determined numerically for a given 
value of S, the unsteady displacement can be written down in the form 

(4.12) A(x) = i 2  exp(-iicX) for x < o , 
A(X) = Ei(X + i/ic) for X > 0 . (4.13) 

Here we have used the fact that, in order for the pressure to be continuous in the 
lower deck, A(X) must be smooth for all X (and in particular for X = 0), and this 
has been achieved by fixing the values of both the arbitrary constant D of (3.11) and 
of a second arbitrary constant corresponding to the coefficient of A(X) in X < 0. The 
longitudinal unsteady velocity above the plate in X < 0 is 

u ( X ,  Y )  = ircE;X(lc, Y )  exp(-iicX) , (4.14) 

and we write the corresponding unsteady streamfunction as q ( X ,  Y )  exp(iT), and for 
definiteness fix @(X,O) = 0. Below the plate it can be shown that U(X, Y )  = 0 for 
X d 0, as in the unsteady lower-deck solution of the subsonic splitter-plate problem 
(Daniels 1978). 

E’ 
ic 

4.2. Unsteady $ow downstream of the trailing edge 
We have therefore determined analytically the unsteady velocity in the lower deck 
upstream of the trailing edge, and in particular at X = -0, and we now go on to 
calculate the evolution of this trailing-edge velocity profile downstream. The steady 
flow in X > 0 is just the inner limit of the steady Goldstein wake (Stewartson 1969); 
it can easily be shown that for X > 0 the streamfunction, yJX, Y ) ,  associated with 
the steady flow is 

YSW, Y )  = t2 fo(r )  9 (4.15) 

where 5 = X f  and q = Y / t ,  and where 

fr = (f? - 2f0f;O/3 (4.16) 

subject to f;l(q) - 0 as q + -00 and f o ( q )  - q2/2 as q + 00. The unsteady lower-deck 
equations are again linearized by treating the amplitude of the unsteady flow as 



334 N. Peake 

being much smaller than that of the steady flow, and the resulting system solved 
numerically; we note that, owing to the abrupt change in boundary conditions at 
the trailing edge, the two-region scheme first developed by Smith (1974), and later 
applied to a number of different wake flows by Daniels (1976), must be used. We 
define region I, in which y = O(1) and in which the steady base flow is given by 
(4.15), and region 11, in which y is large and in which the steady flow is simply 
uniform shear, and perform the linearization in each region separately. In region I, 
the streamfunction associated with the total flow is written as t2G(<,y,  T ) ,  and in 
order to linearize about the steady base flow we define the streamfunction associated 
with the small unsteady part of the flow as t2G(5, y) exp(iT), with 

(35, rl ,  T )  = fob) + G(5, r )  exp(iT) . (4.17) 

After substitution into (3.2) and neglect of quadratic terms we arrive at the linearized 
equation governing the downstream evolution of G in the form 

isc-+-  f ~ - - f o - } = ~ Z ; i ’ - ~ ~ + - - + -  a*@ ,,aG 1 a3@ 2f;aG 2foa2G 2f;G . (4.18) { araq a t  y 35 ay2 35 

In region 11, the streamfunction associated with the total flow is denoted F ( 5 ,  Y, T ) ,  
and we write 

~ ( 5 ,  Y ,  T )  = +y2  + F ( 5 ,  Y)exp(iT) ; (4.19) 

proceeding as before, it can be shown that F satisfies 

(4.20) 

The problem of determining the unsteady velocity field in X > 0 is parabolic in 
X, and we therefore need to specify the initial profile in both regions I and I1 at 
X = 0. The unsteady streamfunction and its Y-derivatives on X = 0 in region I1 
have already been calculated analytically in the previous section. Turning to region 
I, in order to specify the initial condition for the streamwise marching at 5 = 0, the 
limiting behaviour of G(<,y) as < + +O must first be determined, and to obtain this 
we note that the unsteady shear stress on the plate at the trailing edge is Aexp(iT), 
where from (4.14) 

- ilcE;Ai(yo) 
A =  

[ ( K  +id) exp(-in/2)]fAi’(yo) ’ 
(4.21) 

so that the total effective shear stress at the base of region I1 for X = +O is 
1 + Iexp(iT). The streamfunction in region I which matches onto this outer flow in 
region I1 is then simply obtained by rescaling the steady streamfunction described in 
(4.16), and it follows that 

G ( ~ , v ,  T )  - 11 +Jexp( i~) l f fo( [ l  +Jexp( i~) ] ;y)  as 5 -+ +O . (4.22) 

Finally, equation (4.22) is linearized by setting 2 e 1, and by comparison with (4.17) 
we see that 

G G V )  = $ w o ( V )  + vlfl!l(V)) as 5 -+ +o 9 (4.23) 
thereby specifying the flow in the inner region near the trailing edge. 

Full details of the numerical procedure are given by Smith (1974), and we merely 
note here that the equations (4.18) and (4.20) are discretized using a central difference 
scheme, and that the mesh points in region I are chosen to be uniformly spaced in 
< and q ,  whilst in region I1 they are uniformly spaced in 5 and Y .  The unsteady 
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streamfunction and its first two Y-derivatives are matched on the boundary between 
the two regions, whilst boundary condition (4.5) is applied on the upper edge of 
region I1 and the unsteady velocity is set to zero on the lower edge of region I. The 
resulting matrix equation, expressing the flow at a given <-station in terms of the 
flow at the previous upstream station, can then easily be solved by pivoting and back 
substitution; the solution is started with the asymptotic result for the unsteady flow 
very close to the trailing edge, as described above, and then marched downstream. At 
5 = 1 regions I and I1 are replaced by a single uniform grid of equally spaced X and 
Y points. 

4.3. Asymptotic solution downstream 
Following Daniels (1975) we make the substitutions ? = Y - A and = I/ - 
SJA/BT - UJA/aX in the full nonlinear lower-deck equation (3.3) and its boundary 
conditions, and whilst (3.3) remains unchanged, boundary condition (3.8) becomes 
simply U --+ ? as ? + co; it is then clear that a solution for U is of the form 

u = 5fk(S) , (4.24) 

where 9 = ?/(. We note here that this solution satisfies the nonlinear lower-deck 
equation and the boundary conditions at ? = +co exactly for all X, but clearly does 
not match at X = 0 with the flow upstream of the trailing edge. We would therefore 
expect the lower-deck velocity to evolve downstream from the trailing edge so as to 
approach the flow described by (4.24), and this indeed turns out to be the case. The 
implication of equation (4.24) is that the nonlinear unsteady flow evolves downstream 
into the form of a steady wake flow which has its centreline aligned along the line 
Y = A(X, T ) ,  and from (3.11) it follows that this centreline is a straight line whose 
gradient oscillates harmonically in time with amplitude E;. In terms of the outer 
variables, the equation of the wake centreline as X + co is therefore 

y = (M* - 1);E2xexp(iot)/pm , (4.25) 

and we see that this is identical to the equation for the vortex-sheet deflection as 
x --+ 0 given in equation (2.12). We can therefore conclude that the flow described by 
equation (4.24) matches with the outer solution downstream of the trailing edge, and 
all that remains to be verified is that the lower-deck flow does indeed converge onto 
(4.24) as X -+ 00. 

In order to make a consistent comparison between the numerical linearized lower- 
deck solution and (4.24), we need to linearize (4.24) as before, and using our expression 
for A(X, T )  in X > 0 it can be seen that the streamfunction associated with (4.24) 
approaches 

( E m  +i/.)tfh(v) as < + . (4.26) 
This can then be compared with the computed values for r2G(<,q). 

4.4. Numerical results 
The linearized equations in the lower deck downstream of the trailing edge were 
integrated numerically as described above. The step size in the streamwise direction 
was taken as 0.05 for 5 both less than and greater than 1, and the equations were 
integrated as far as X = 5, with the solution compared to the downstream asymptotic 
solution at each step. It was found that a step size of 0.1 in both q and Y was 
perfectly adequate, whilst the boundary conditions at infinity could be applied on 
q = -10 and Y = 6. 
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FIGURE 4. The computed amplitude of the normalized longitudinal velocity component in the 
lower deck on the centreline, IU(X,O)/E;I, plotted against streamwise coordinate X downstream of 
the trailing edge for S = 0.5,2.5, and 10 (solid lines), together with the corresponding asymptotic 
downstream solution (dashed lines). 

The computed values of lU(X,O)/E;I are plotted in figure 4 for various values of 
the frequency parameter S, and are compared with the asymptotic solution described 
in the previous subsection (it is easy to show that the parameter E; is independent 
of frequency for w = O(C-~), and hence independent of S, when the amplitude of the 
acoustic pressure forcing the motion is held fixed, so that the flows described in figure 
4 are forced by acoustic waves of differing frequencies but of the same pressure). In the 
vicinity of the trailing edge the unsteady flow close to Y = 0 is driven by the unsteady 
shear stress, 2, at the trailing edge, and the flow for each S corresponds to the limiting 
form given in (4.22), with the unsteady velocity proportional to Xf as X -+ +O. In 
contrast, sufficiently far downstream the flow is essentially determined by the local 
value of the unsteady displacement thickness, A ( X ) ,  and we have A ( X )  oc X + i / q  
so that the velocity grows linearly downstream. These two regions of X small and 
X large are joined smoothly over intermediate values of X ,  for which no asymptotic 
solution is available. For each value of S considered, the computed unsteady velocity 
converges to the asymptotic solution given in (4.24) downstream, confirming that the 
downstream behaviour of the lower-deck flow is fully consistent with the potential- 
theory solution in the outer flow. As might be expected, since 1/S is essentially a 
measure of the lengthscale of the unsteady flow, the distance downstream taken to 
converge to the asymptotic solution is seen to decrease as S increases; indeed, when 
S is as large as 10, the computed and asymptotic solutions are indistinguishable for 
X > 1. In addition, the magnitude of the unsteady velocity appears to be relatively 
insensitive to S close to the trailing edge but decreases with increasing S further 
downstream, and this can be understood by considering the limit S + 00. It can 
easily be shown from (4.18) that for large values of S the expression for the unsteady 
flow near the trailing edge given in (4.22) is valid for X < O(S-i), so that in this 
region the flow is driven by the value of 2, and it turns out that 2 converges to 
its (finite and non-zero) large-S limit very quickly as S is increased, and is virtually 
independent of S for S = O(1). For X > O ( S - t )  it can be seen from (4.26) that 
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FIGURE 5. The computed amplitude of the normalized longitudinal velocity component in the 
lower deck (solid lines), ( U ( X ,  Y ) / E ; ( ,  plotted against transverse coordinate Y ,  for various values 
of downstream coordinate X: (a) X = 0.02; (b)  X = 0.4; ( c )  X = 0.8; ( d )  X = 1; (e )  X = 2. The 
downstream asymptotic solution is plotted at X = 2 (dashed line). 

the quantity I U(X, Y)/E;( approaches the non-zero limit f:(q)X monotonically as 
s + co. 

In figure 5 we plot the downstream evolution of the unsteady longitudinal velocity 
profile lU(X, Y)/EiI for the particular value S = 0.5; we merely note here that the 
transverse extent of the layer over which the unsteady flow adjusts from its zero 
value as Y + -co to the value --A(X) as Y + 00 increases rapidly downstream, with 
width proportional to X f .  The computed profile at X = 2 is seen to be in very close 
agreement with the downstream asymptotic solution. 

5.  Concluding remarks 
We have therefore seen that the single plausible outer potential-theory solution to 

our supersonic splitter-plate problem, in which the unsteady pressure is discontinuous 
and the vortex sheet has non-zero gradient at the trailing edge, can be matched 
consistently with the inner viscous flow near the trailing edge for the choice of 
frequency w = O ( F - ~ )  and incident amplitude I = O(r4) .  Very close to the trailing edge 
in the lower deck the dividing streamline in our unsteady flow can be shown to oscillate 
harmonically about the location of the steady dividing streamline, Y = 0.895Xf, with 
an amplitude proportional to the unsteady shear stress 2, and since in our linearized 
flow 2 is small the dividing streamline at the trailing edge is seen to bend up into 
the moving fluid at all times. This is exactly the same behaviour as encountered 
in the full-Kutta-condition solution of the subsonic splitter-plate problem (Daniels 
1978), the only difference here being the functional form of the unsteady shear stress. 
Further downstream, however, the equation of the dividing streamline will be 

Y = 0395x4 + E;Xexp(iT) as X + co , (5.1) 
so that even when the unsteady flow is only a weak perturbation to the steady base 
flow (i.e. IE;I < 1) the dividing streamline will oscillate about Y = 0 for sufficiently 
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large X ,  and this exactly matches with the behaviour of the vortex sheet in the outer 
flow near the trailing edge. In addition, by considering the deflection of the vortex 
sheet at the trailing edge, it is seen that significant unsteady shear-layer disturbances 
can be generated at the trailing edge by acoustic waves propagating from upstream 
over a wide range of acute values of the incidence angle, and this seems particularly 
significant, since it suggests that noise generated by engine components well upstream 
of the nozzle can have a marked effect on the unsteady behaviour of the jet near the 
nozzle. 

With regard to the question of flow separation, in the linearized analysis of $ 4  we 
assumed that 1 + 1, so that separation cannot occur; when 2 = 0(1), however, an 
exact separation condition could only be determined via a numerical solution of the 
full unsteady nonlinear lower-deck equations, and that has not been attempted. Our 
results can be used to determine an approximate separation condition, however; the 
condition 2 + 1 is equivalent to IE;I + 1, and by writing Z = e41 it is easy to see that 

where D(&) is a complicated function of incidence angle, Bi, and A(k1) is defined in 
Appendix A. For Bi < 71/2, D(&) is 0(1), and it therefore follows that for o = 0(c2)  
our unsteady flow will not separate from the trailing edge provided that 

is significantly smaller than unity. For forcing at a lower frequency (i.e. when 
o = o(~.-~)) ,  then provided that Z is chosen such that the pressure at the trailing 
edge remains O(e2), the problem in the lower deck would reduce to a form exactly 
equivalent to that found for a plate inclined into a steady supersonic stream on one 
side with zero flow on the other side, and a separation condition derived in exactly 
the same way as described by Daniels (1975) for an oscillating airfoil in supersonic 
flow. 

Finally, we remark that our unique solution of the supersonic splitter-plate problem 
will be of relevance to further investigations into the question of exactly which ofthe 
non-unique outer solutions of the subsonic splitter-plate problem is realized in practice. 
We proceed by attempting to determine the transonic limit of our supersonic solution 
(i.e. takhg the limit M --f 1 in the results presented here), and then comparing this 
with the limiting behaviour of the various subsonic solutions. As a preliminary result, 
we note that from equation (2.12) the coefficient of the first term in the expansion 
of the vortex-sheet deflection as x --f +O is identically zero for M = 1, so that 
the vortex-sheet deflection is no longer proportional to x; it turns out, by setting 
M = 1 in the outer potential-theory problem, that q ( x )  cc xi as x --f +0, which is in 
fact reminiscent of the vortex-sheet behaviour of the full-Kutta-condition solution in 
subsonic flow. However, analysis of both the inner and outer unsteady flow regimes 
will be required in order to resolve this question satisfactorily, involving the transonic 
triple-deck scalings first identified by Messiter, Feo & Melnik (1971), and work is 
now well under way in this direction. 

The author is very grateful to Professor D.G. Crighton for suggesting this problem 
and to Professor P.G. Daniels for a number of helpful conversations, and is pleased 
to acknowledge the financial support of the Royal Society. 
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Appendix A 
In this appendix we state the decomposition of the Wiener-Hopf kernel function 

G(k) for the outer potential problem of $2  - see Morgan 
define r ( k )  by 

where 
Yl(k)G + rz(k)(ko - Mkj2 

(k - uo)(k - Ui) 
r '(k) = 

and where uo and u; are the zeros of G(k), and it is 

(1974) for full details. We 

therefore clear that r (k) 
now be factorized in the is non-zero throughout the complex k-plane. r ( k )  can 

form I'(k) = r+(k)T-(k), with r* (k )  analytic and non-zero in the half-planes R* 
respectively, using the Cauchy-integral formulation described by Noble (1 958) ; for 
instance, for k lying in the strip R+ n R-, we have 

where the integration contour lies within the strip but passes above the point z = 
k. This integral can be considerably simplified (Morgan 1974); we proceed by 
deforming the contour to lie around the branch cut in the upper half-z-plane, yielding 
contributions from the branch-cut integral and from the circle at infinity, and it can 
be shown that 

where 
17-(k) = Y2(k )  exp(4k)) 9 (A 4) 

1 J-" {tan-' [ ~ ~ 2 ( z ) ~ / ~ ~ 1 ( z ) ~  (l -Mz/ko)2] - a / 2 }  
A(k) = -- dz . (A 5) -b z - k  

Hence, using the fact that y,(k) = 1, we see that 

G-(k) = exp(&)) , 

It can easily be seen that G-(k) is analytic and non-zero in R-, and that G-(k) - 1 
as k -+ cc E R-. The analyticity of G+(k) in R+ is guaranteed by the fact that yl(k) 
is analytic throughout R+, and by the fact that A(k) is logarithmically divergent at 
k = -ko (so that G+(k) is regular in the neighbourhood of the branch point in the 
upper half-plane at k = -h). It follows that 

G+(k) - -M2k/(M2 - l)i (A 8) 

a s k + m E R +  

Appendix B 

first moment to determine the root of the equation 
In this appendix we briefly describe the use of the winding-number integral and its 

X(k,O) = 0 (B 1) 
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FIGURE 6. The path of the single zero, IC, of equation (4.9) lying in the upper half-plane as S is 
increased from zero to a maximum value of 10 (solid line), with the asymptotic limit as S + co 
(dashed line). 

in the upper half of the complex k-plane; full details of this method are given 
by Brazier-Smith & Scott (1991). The generalized winding-number integral for any 
function F(k) around a given closed curve in the complex plane is 

where ' denotes differentiation with respect to k, and it is well-known that l o  = n, -np ,  
where nz,p are the numbers of zeros and poles of F(k) enclosed within the integration 
contour. In our problem, it will be more convenient to consider y(k ,O)  = k2X(k,0) 
instead of X(k,  0), since f(k,  0) possesses no poles in the upper half-plane and since 
y(k,  0) cc k! as k + co, so that there are no zeros of y(k ,  0) far from the origin. We 
note further that the corresponding expression for 10 can be integrated once to give 

(B 3) 
1 

10 = =[logB(k,O)I , 

where the square brackets denote the change in log y(k ,  0) in going once round the 
closed contour, and the definition of the complex logarithm is the standard one in 
which the branch cut lies along the negative real axis. 

We therefore proceed by choosing integration contours lying in the upper half-plane 
and calculating the variation of log y(k ,  0) round each contour; obviously, lo changes 
by 1 each time the value of #(k,O) crosses the negative real axis. In this way, by 
choosing rectangular contours so as to cover all of the upper half-plane in which 
k = 0(1), it is possible to demonstrate that f(k,O) has only one zero in the upper 
half-plane, and that this zero lies in the second quadrant. In order to determine 
the position of this single zero, we proceed as in Brazier-Smith & Scott (1991), and 
calculate the first moment of the winding integral for y(k,O), which can be simplified 
as 
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In our case, since j ( k , O )  possesses only a single zero, at k = K say, it can easily be 
shown that ZI = K .  

This method is therefore particularly efficient in our problem, since we have 
demonstrated that there is only a single root of (B 1) in the upper half-plane simply 
by evaluating log $(k, 0) at several points round suitably chosen closed curves, whilst 
the position of this zero has been determined with the need to evaluate only a single 
integral (i.e. the integral of log $(k ,  0)) numerically. The numerical integration was 
performed using the simple trapezium rule, and was seen to be accurate even when 
only a relatively small number of subintervals round the contour were used. This 
approach appears to be more efficient than alternative techniques for determining 
K ,  such as numerical solution of the linearized lower-deck differential equation, or 
solution of ( B l )  by Newton-Raphson iteration. The path of the single zero in the 
upper half of the k-plane as S is increased from zero is shown in figure 6. 
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